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Robert Cox, Steven Leeb, and Team 

Work on the AUV NILM project has proceeded along two main fronts: 

• NILM System Development 

• Diagnostics for Li-Ion Batteries 

I. NILM System Development 

In January 2009, we installed a NILM system in the Odyssey Class AUV at MIT.  The 
primary components are the following: 

• NILM Sensor and Power Board 

• Computer 

• Data Acquisition System 

• Wireless Adapter   

Figure 1 shows the sensor and power board designed for use in the AUV.  Circuitry on this 
board is powered directly from the 96V DC signal provided from the Li-ion battery pack.  This 
voltage is stepped down to 5V using a compact quarter-brick DC/DC converter from Synqor.  
The 5V DC output from the Synqor module supplies power to all of the other components in the 
system.  A +12V bus and -12V bus are provided by a separate DC/DC converter that is fed from 
the 5V rail.    The sensor board is equipped to interface with a variety of sensors.  Our suite 
currently includes the following: 

• LA-55 Hall effect probe monitoring battery current. 

• LA-55 Hall effect probe monitoring current into one phase of one of the thrusters. 

• Isolated LV-25 Hall effect voltage sensor monitoring battery voltage 

• LM35 temperature sensor 

• FET microphone 

Signal-conditioning circuits on the PCB perform amplification and filtering.  An instrumentation 
amplifier and a precision voltage reference compute the “details” of the low-frequency variations 
in the battery voltage.  Ultimately, seven signals are provided to the data-acquisition system via 
the Molex connector at the bottom of the board: 

• Battery current 

• Thruster current 
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• Battery voltage 

• Zoomed-in “Details” of the battery voltage 

• Precision voltage reference 

• Temperature  

• Sound level 
Filtering for Power Stage 
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Figure 1: NILM Sensor and Power Board. 

Data acquisition and storage in the AUV NILM is controlled by a small-footprint computer 
manufactured by Gumstix.  Figure 2 shows a photograph of the “gumstick” device.  This Linux-
based computer interfaces with both a wireless adapter (via USB) and a 16-bit data-acquisition 
system manufactured by LabJack.  The wireless adapter is connected to the gumstick via USB, 
and the LabJack module is connected via Ethernet.  The wireless feature was added so that data 
can be easily downloaded by a user with a nearby laptop.  Power is provided from the Synqor 
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module on the sensor board.  Note that both the adapter and the computer are affixed to a plexi-
glass backplane.   

 

 

 

“Gumstick” Comp. 

Power from Sensor 
Board 

Ethernet Port to 
LabJack 

Wireless Adapter 

Figure 2: Gumstick computer (right) and wireless adapter (left). 

All of the components of the NILM system are installed inside of a high-pressure housing 
from Prevco.  The sensor board is affixed to the transparent lid of the Prevco housing as shown 
in Figure 3.  Note that all of the other components are currently strapped to the sensor board.  
The data-acquisition system from LabJack can be seen immediately to the left of the gumstick 
computer.   

Figure 4 shows the complete NILM sphere connected to the AUV.  Note that four sets of 
cables are connected to the top of the housing.  The two cables with the red connectors carry the 
main battery current.  The other two cables carry three wires, one for each phase of one of the 
thruster motors.  Current sensors are contained inside of the NILM housing, and a 3A inline fuse 
protects the battery from any potential problems inside the NILM sphere.   
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Figure 3: Complete NILM system as installed inside the Prevco housing.   
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Figure 4: AUV showing the connection of the NILM sphere.    
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System Features 

Currently, the NILM system is configured to sample 7 signals at a rate of 8kHz per channel.  
Given the data storage limitations on the gumstick, the NILM can sample for approximately 10 
hours.  To begin data collection, a user must bring a laptop close to the AUV and log into the 
gumstick using an ssh client.  Once logged in, the user must execute the start_run script which 
begins data collection.  At that point, data collection will continue independently without any 
need for interaction from the user.  The NILM will continue to collect data until it is either told 
to stop via execution of the stop_run script, or until its flash memory becomes nearly full.  To 
retrieve data, the user can again log into the gumstick from a laptop and transfer files using either 
ftp or ssh.   

Example Data 

We have performed initial testing with the NILM connected to the AUV in the laboratory.  
Figure 5 shows some results.  The top trace is the output voltage from the hall effect sensor that 
monitors one of the thruster currents.  The bottom trace is the output voltage from the sensor 
monitoring the battery current.  Note that the thruster was started twice.  During the first start, the 
thruster was operated at a low speed; during the second test it was operated at its highest speed.     
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Figure 5: Sensor output signals.  Top: Thruster current.  Bottom: Battery current.      
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Figure 6 shows details of both the thruster current and the battery current during a thruster 
start-up.  Note that the battery current is clearly related to the envelope of the thruster current.  
We are currently investigating this behavior in the laboratory using a similar system described 
later.   
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Figure 6: Details of the sensor output signals during the high-speed start.      

      

II. Battery Diagnostics1 

We are currently investigating non-intrusive diagnostics and health-monitoring algorithms 
for lithium-ion batteries.  Our technique is based on an approach that we previously developed 
for lead-acid batteries.  This method is described below, and some results from tests using 
individual cells from the Odyssey class AUVs are included.   This section also describes ongoing 
work using Bayesian Belief Networks to try to model the complex physical relationships that 
exist between battery parameters and various external effects.     

 
 
 

                                                 
1 The work described in this section is to be presented at the IEEE Energy Conversion Congress and Exposition 
(ECCE) in September 2010.   
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Introduction to the Transient-Based Monitoring Approach 
 

The growing demand for electric vehicles and distributed energy sources has increased the 
need for safe, reliable, and cost-effective energy-storage systems, many of which include 
batteries.  The reliability and efficiency of these battery-based systems can be significantly 
improved using intelligent energy-management systems that effectively indicate battery health in 
real time.  On-line monitoring can be difficult, however, because batteries are non-linear and 
time-varying systems whose parameters and terminal characteristics depend on temperature, 
usage history, and many other environmental and state-based factors [1].  Such a monitoring 
system would be useful aboard AUVs.   

 
This section describes a non-intrusive method for estimating the electrical parameters of a 

battery during typical operating cycles.  In this approach, parameters in an equivalent lumped-
element electrical model are estimated when transient currents are drawn from the battery 
terminals.  The method is based on the experimental observation that standard electrical loads 
draw transient current waveforms that sufficiently excite the internal dynamics of the battery.  
Extensive previous research and theoretical arguments indicate that these electrical parameters 
are closely related to the overall health and state-of-charge of the battery [1],[2],[3],[4],[5].  One 
could thus use the estimated parameter values as the basis for an on-line monitoring system.  
Such a method would have advantages over other approaches. For instance, many methods 
require special tests sources, and others, such as the estimation of state-of-charge based on 
current integration, are subject to biases [1], [2], [3]. 
 

The Estimation Process 

Transient measurements are used to estimate the values of the parameters in the circuit model 
shown in Fig. 7 [4], [6], [7].  Identification is performed by connecting the battery to a typical 
electrical load such as a headlamp.  Figure 8 shows the response when a 12V lead-acid battery is 
connected to a halogen bulb.  Clearly, the first-order dynamics represented in Fig. 7 have been 
excited.  Several researchers have proposed higher order models with additional time constants 
[6], [7], but we have found the single time-constant model to be sufficient over the majority of 
the lifetime of the battery.   

 
 

 

 

 

 

 

    Figure 7: Series RC model for the lead-acid battery.      
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Figure 8: Terminal voltage and terminal current following the connection of a halogen head lamp to a 12V lead-
acid battery.        

The model in Fig. 7 is described by the state equation 

                                                      21 αα cb
c VI

dt
dV

−=   .                                                        

and the observations 
                                                      cbocb VIVV −−= 3α .                                                 
The parameters α1, α2, and α3 are defined as follows: 
 

                  
C
1

1 =α                  
CR2

2
1

=α        13 R=α .         

The values of these parameters are estimated using a three-step procedure.  First, we excite the 
battery using an ordinary load such as an automotive headlamp.  During this test, we measure 
both the terminal current Ib and the terminal voltage Vb. Second, we pre-estimate initial guesses 
for a non-linear estimation routine to be used in the next step.  Finally, we estimate the final 
parameter values.  Each step is described in greater detail below.   
 

Step 1: Measurement  

The estimation procedure uses data collected during the turn-on transient of a typical 
electrical load.  Figure 9 shows the block diagram of the current laboratory setup.  In all, four 
quantities are measured: 

 
• Battery terminal voltage 
• Battery terminal current 
• Ambient temperature 
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• Amplified “details” of the battery voltage 
 
The fourth channel uses a differential amplifier to remove the DC average from the battery 
voltage.  This circuit allows one to accurately observe the “details” of the relatively tiny battery 
response.  Experimental loads such as automotive headlamps and ventilation fans are connected 
to the battery through a solid-state relay.   Note that the overall measurement setup is similar to 
the one used aboard the AUV.   
       

 

 

Figure 9: The block diagram of the current measurement system.  Note that four signals are interfaced to the Data-
Acquisition System (DAS). 

 
Step 2: Pre-Estimation 

Initial guesses for all three model parameters are determined from simple physical 
arguments.  First, an initial guess for α3 is determined by noting that the capacitor initially acts as 
a short circuit when a current is suddenly applied at the terminals.  This observation allows us to 
easily obtain a guess for α3, which is related to the resistance R1.  The remaining two parameters 
are estimated by noting that the capacitor voltage displays an exponential response when excited 
by a step current.  This observation is utilized to calculate a pre-estimate for α2, a parameter that 
is related to the time constant of the resulting exponential.   A pre-estimate for the remaining 
parameter, α1, is evaluated in multiple steps.  First, we know that the terminal voltage will 
approach  as t → ∞.  Because of this, we can estimate a value for the total 
resistance using the steady-state value of the current and the magnitude of the change in the 
terminal voltage.  Since α3 depends on R1, its value is used with the estimate for the total 
resistance to obtain a guess for R2.  The capacitance C, which is inversely related to the 
parameter α1, is finally calculated using the estimate for R2 and the estimate for α2.  Throughout 

( 21 RRIV boc +− )
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all of these steps, we assume that the ideal source Voc does not change significantly during the 
course of the transient.  Experimental results have shown this to be true as long as the state-of-
charge is not extremely low and the load step is not extremely large.   

 
Part 3: Estimation  

Initial guesses for the three parameters are fed to a non-linear least-squares routine that 
estimates the value of each.  Our algorithm is based on the modified version of the Gauss-
Newton method presented in [8].  This robust routine tends to avoid local minima by exploiting 
any structure in the residuals [8].  The overall estimation step minimizes  

)(
^
μbb VVr −= , 

where μ is the parameter set and is the resulting estimate of the terminal voltage.  is 
produced via a simulation.   

^

bV
^

bV

 

Experimental Results  

Experimental testing has been conducted in the laboratory.  Figure 10 shows both the 
measured and estimated battery voltage following the connection of a halogen headlamp to a 
standard 12V automotive lead-acid battery.  Figure 11 shows how the estimated resistance R1 
(the model parameter α3) varies versus state-of-charge at a fixed temperature (25o C).  In these 
experiments, state-of-charge was independently verified using the open-circuit voltage, which is 
linearly related to state-of-charge except at very low and very high values of state-of-charge [1], 
[3].  Details about the effects of other quantities such as temperature are briefly addressed later in 
this document. 
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Figure 10: Solid green line: Measured battery voltage.  Blue asterisks: Estimated voltage.   
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Figure 11: Value of R1 versus state-of-charge at 25 degrees C.  Note that R1 increases as state of charge decreases.   
 
 

 
Approach used with Lithium-Ion Batteries 
 

The estimation method described above has also been applied to the lithium-ion batteries 
deployed on the Odyssey class AUVs in the MIT AUV Laboratory.  The batteries under test are 
18650-type cells.   These cylindrical devices are commonly used in portable electronics, 
including laptops and camcorders.  Their nominal voltage is approximately 3.7V [10].   

 
Various models have been proposed for lithium-ion batteries.  Many of these try to express 

the complex non-linear behavior using detailed physical models for the internal electrochemical 
and thermal processes [9].  A simple lumped-element electrical model has been used here.  This 
model has the same form as the one shown in Fig. 7 for the lead-acid battery.    In this model the 
capacitance describes the effects arising from polarization and the diffusion of space charges 
near the electrode/solution interface, and the resistances model the effects of finite conductivities 
in the electrodes and separators, limited reaction rates at the electrodes, and concentration 
gradients near the electrodes [10].  All of the elements in the simple lumped-element model, 
including the open-circuit voltage, depend upon temperature, the amount of remaining active 
material, and other effects.  Although highly simplified, the first-order dynamics of the proposed 
model match closely with experimental measurements.  This fact has also been observed by 
other researchers [10].   

 
The experimental setup used with the Li-ion batteries is shown in Fig. 12.  This arrangement 

is functionally equivalent to the one shown in Fig. 9 for the lead-acid battery.  In this case, we 
connect a 4.7Ω resistor across a single cell.  The resulting transient response is used for 
estimation.  Figure 13 shows the current and voltage measured during a typical experiment.  
Note that the general form of the voltage response is consistent with the model shown in Fig. 7.  
Additionally, it is clear that the time constant R2C is much smaller in this battery than it was in 
the 12V lead-acid.  The primary reason for this is that the capacitance of the 18650 Li-ion cell is 
much smaller than the capacitance of its larger 12V lead-acid counterpart [10].   
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Figure 12: Laboratory test setup for Li-ion battery diagnostics.     
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Figure 13: Top Trace: Current drawn by a 4.7 Ohm resistor connected across the terminals of the battery.  Bottom 

Trace: The terminal voltage in response to the current shown in the top trace.   
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Experiments have been conducted using a single 18650 cell at a number different charge 
levels.  The estimation process uses the same three steps described for the lead-acid case.  Table 
1 shows how the value of the estimated capacitance varies as a function of state-of-charge.  This 
behavior matches expectations, as the capacitance is known to increase as the depth-of-discharge 
increases [5].  All tests were performed at 25 degrees C.   

 
 

Table 1: Capacitance vs. State-of Charge in an example 18650-type Li-Ion Cell.  All values were obtained at 25 
degrees C. 

Capacitance 
Value (F) 

State-of-
Charge 

(%) 

1.46 20% 

1.21 40% 

0.78 60% 

0.62 80% 

 

Conclusion: Moving Towards a Robust Health-Monitoring Tool 

The proposed method provides the basis for a robust on-line monitoring system for both lead-
acid batteries and lithium-ion cells.  One open question is how to deal with the effects of 
temperature, rate-of-discharge, and other factors.  For instance, the capacitance in the Li-ion 
battery model depends on both the state-of-charge and the temperature.  If the estimated value of 
the capacitance changes, one might wonder if this change has been caused by temperature 
fluctuations or by a true change in state-of-charge.  The solution currently under investigation 
uses what are known as Bayesian belief networks (BBNs).  These networks are commonly used 
to solve problems involving uncertainty, complexity, and probabilistic inference.  BBNs are 
based on models that describe the complex inter-relationships between the various components 
in a system [11].  Their main use comes in situations that require statistical inference.  For 
instance, if one knows that a particular event has occurred in a system, the BBN attempts to 
determine what unobserved events may result.  These networks are now commonly used in 
diagnostic applications [11].   

In the example of the Li-ion capacitance, one could build a network that models the 
interrelationship between capacitance, temperature, and state-of-charge.  If one observes a 
change in capacitance, the BBN would decide if the change was more likely caused by change in 
charge level or a change in temperature.  The successful application of this method will require 
extensive statistical modeling.  The authors are currently in conversations with the National 
Renewable Energy Laboratory (NREL) to obtain the necessary data.   
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III. Future Work 

The authors are interested in continuing work with the MIT AUV laboratory.  Several tests 
are currently identified: 

 
• On-line testing of battery parameter estimation on the full 96V battery pack 
• Modeling and diagnostic development for the AUV’s electromechanical loads 

 
With permission, the authors would like to perform these tests in the summer of 2010.  
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